
Ensuring Correctness and Error Localisation In
Cloud

Deepitha K R, Animesh Giri

PES Institute of Technology - South Campus,

Bangalore- 560100

Abstract: Cloud Computing has been envisioned as the next
generation architecture of IT Enterprise. In contrast to
traditional solutions, where the IT services are under proper
physical, logical and personnel controls, Cloud Computing
moves the application software and databases to the large
data centres, where the management of the data and services
may not be fully trustworthy. This unique attribute, however,
poses many new security challenges which have not been well
understood. In this paper, we are implementing the cloud data
storage security, which has always been an important aspect
of quality of service. To ensure the correctness of users’ data in
the cloud, we propose an effective and flexible distributed
scheme with two salient features, opposing to its predecessors.
By utilizing the homomorphism token with distributed
verification of erasure-coded data and low density parity
check, our scheme achieves the integration of storage
correctness insurance and data error localization, i.e., the
identification of misbehaving server(s). Unlike most prior
works, the new scheme further supports secure and efficient
dynamic operations on data blocks, including: data update,
delete and append. Extensive security and performance
analysis shows that the proposed scheme is highly efficient
and resilient against Byzantine failure, malicious data
modification attack, and even server colluding attacks.

Key Words: Cloud, Security, TPA, Erasure Encoding, Low
Density Parity Check

1. INTRODUCTION:
 Several trends are opening up the era of Cloud Computing,
which is an Internet-based development and use of
computer technology. The ever cheaper and more powerful
processors, together with the software as a service (SaaS)
computing architecture, are transforming data centers into
pools of computing service on a huge scale. The increasing
network bandwidth and reliable yet flexible network
connections make it even possible that users can now
subscribe high quality services from data and software that
reside solely on remote data centers.
Moving data into the cloud offers great convenience to
users since they don’t have to care about the complexities
of direct hardware management. The pioneer of Cloud
Computing vendors, Amazon Simple Storage Service (S3)
and Amazon Elastic Compute Cloud (EC2) [1] are both
well known examples. While these internet-based online
services do provide huge amounts of storage space and
customizable computing resources, this computing platform
shift, however, is eliminating the responsibility of local
machines for data maintenance at the same time. As a result,
users are at the mercy of their cloud service providers for
the availability and integrity of their data. Recent downtime
of Amazon’s S3 is such an example [2].
From the perspective of data security, which has always

been an important aspect of quality of service, Cloud
Computing inevitably poses new challenging security
threats for number of reasons. Firstly, traditional
cryptographic primitives for the purpose of data security
protection cannot be directly adopted due to the users’ loss
control of data under Cloud Computing. Therefore,
verification of correct data storage in the cloud must be
conducted without explicit knowledge of the whole data.
Considering various kinds of data for each user stored in
the cloud and the demand of long term continuous
assurance of their data safety, the problem of verifying
correctness [12] of data storage in the cloud becomes even
more challenging. Secondly, Cloud Computing is not just a
third party data warehouse. The data stored in the cloud
may be frequently updated by the users, including insertion,
deletion, modification, appending, reordering, etc. To
ensure storage correctness under dynamic data update is
hence of paramount importance. However, this dynamic
feature also makes traditional integrity insurance
techniques futile and entails new solutions. Last but not the
least, the deployment of Cloud Computing is powered by
data centers running in a simultaneous, cooperated and
distributed manner. Individual user’s data is redundantly
stored in multiple physical locations to further reduce the
data integrity threats. Therefore, distributed protocols for
storage correctness assurance will be of most importance in
achieving a robust and secure cloud data storage system in
the real world. However, such important area remains to be
fully explored in the literature.

A. Problem Statement: In cloud data storage, a user
stores his data through a CSP into a set of cloud servers,
which are running in a simultaneous, cooperated and
distributed manner. Data redundancy can be employed with
technique of erasure-correcting code to further tolerate
faults or server crash as user’s data grows in size and
importance. Thereafter, for application purposes, the user
interacts with the cloud servers via CSP to access or
retrieve his data. In some cases, the user may need to
perform block level operations we are considering are
block update, delete, insert and append.
As users no longer possess their data locally, it is of critical
importance to assure users that their data are being
correctly stored and maintained. That is, users should be
equipped with security means so that they can make
continuous correctness assurance of their stored data even
without the existence of local copies. In case those users do
not necessarily have the time, feasibility or resources to
monitor their data, they can delegate the tasks to an
optional trusted TPA of their respective choices. In our
model, we assume that the point-to-point communication

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 625

channels between each cloud server and the user is
authenticated and reliable, which can be achieved in
practice with little overhead, we propose Low Density
Parity Check – LDPC Encoding technique for ensuring data
correctness stored in cloud scenario.
.

2. LITERATURE SURVEY
A. Secure cloud: In cloud data storage system, users
store their data in the cloud and no longer possess the data
locally. Thus, the correctness and availability of the data
files being stored on the distributed cloud servers must be
guaranteed. The key issues in data storage are:
There are many constraints, discussed as C1, C2 & C3.
C1. How do I ensure that there is no un-authorized access
to my cloud by a disgruntled employee, who has left the
organization or by an identity thief?
C2. How to ensure proper levels of authentication to cloud
services? How do I manage multi-device access?
C3. In multi-cloud scenario, how do I ensure that I provide
/ delegate access to users to different security domains so
that the end-to-end workflow is seamless? Similarly, in
hybrid cloud, how do I create a minimum common access
control and identity structure?
Implication: Ensure proper access control and identity
management.
Synchronizing enterprise and external cloud services access
control lists in the context of C1 to ensure right access roles
is a very important challenging issue as PaaS and SaaS
platforms have complex hierarchies and many fine-grained
access capabilities (tenant org level, sub-tenant, and
individual user levels). This assumes importance as users,
who are no longer part of an enterprise, may still
potentially exploit access provided in cloud; unless those
credentials are revoked quickly. However, we recognize
this as more of a process issue than a technology one. Use
of standard languages like Service Provisioning Markup
Language] promoted by OASIS, can enable faster user
account provisioning and de-provisioning. Cloud service
authentication (C2) presents some interesting problems.
Cloud services are increasingly getting accessed through
browsers and thin mobile devices running new set of
applications like HTML-5. Browsers do not have direct
means of handling XML signatures and XML encryption,
and rely on the underlying SSL layer for handshake. Hence
this channel may become a potential threat if not secured
properly. This may push enterprises to use VPNs while
communicating to cloud. The Cloud Security Alliance
recommends cloud provider to provide stronger
authentication mechanism and also (optionally) allow users
to use third party identity management and single sign- on
platforms like Microsoft Passport. This may lead to an
added set of authentication complexity. Online open
identity management communities like OpenID , OAuth etc.
are proliferating and each brings its own set of integration
challenges for cloud providers.
There is a growing chorus on ‘inter cloud’ hand-offs and
federated identity management (C3), possibly through
assertion tokens like Security Assertion Markup Language
(SAML) or privilege management infrastructure based on
x.509 certificates. The ongoing standardization work WS-
federation may provide some help in this aspect. Cloud

federations need to establish a set of common security
token services and identity providers. But in dynamic cloud
scenario these trust relations may not work. We need to
develop more flexible cases of identity federation.

B. Security threats:
The table 1, extracted from a study done in, shows the main
cloud computing security issues. As shown in the column
Total, more than 70 % of the SME (small and medium
enterprises) interviewed for this study are concerned by the
first six criteria and more specifically by confidentiality of
data.
The European Network and Information Security Agency
(ENISA) identified thirty-five risks divided in four types:
policy and organizational risks, technical risks, legal risks
and risks that are not specific to the cloud [6]. From these
risks, the ENISA extracted the eight most important risks.
Five of these eight risks concerns directly or indirectly the
data confidentiality: isolation failure, management interface
compromise, data protection, insecure or incomplete data
deletion, and malicious insider. Similarly to ENISA, the
CSA identified thirteen kinds of risks related to cloud
computing [3] and selected the seven most important risks
[7]. Five of these risks concerns directly or indirectly data
confidentiality: insecure application programming
interfaces, malicious insiders, shared technology
vulnerabilities data loss/leakage, account service and traffic
hijacking. However, some of these security risks are not
specific to the cloud computing [8].

Criteria
Very
Important

Showstopper Total

Confidentiality of
corporate data

30,9% 63,6% 94,5%

Privacy 43,9% 43,9% 87,8%
Availability of
services and/or data

47,3% 40,0% 87,3%

Integrity of services
and/or data

42,6% 44,4% 87,0%

Loss control of
services and/or data

47,2% 28,3% 75,5%

Lack of liability of
providers in case of
security incidents

43,1% 29,4% 72,5%

Repudiation 47,9% 8,3% 56,2%

After having seen the main cloud computing security issues,
we now focus on the security properties provided by the
existing databases and we briefly present the results of the
study we have done on these databases taking into account
the feedback of final users, personal tests and databases
documentation. For this study, we have chosen the most
popular freeware and proprietary traditional databases
(such as SQL Microsoft, Oracle, DB2, MySQL,
PostgreSQL) as well as clouds databases (such as Amazon
SimpleDB, Google DataStore and Azure SQL). To compare
the existing databases, from a security point of view, we
have defined ten security criteria
 Users’ identification and authentication: identify the

database users in a safe and not ambiguous way in
order to apply the access controls according to the
rights of each user.

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 626

 Identification robustness and authentication:
guarantee that it is difficult to usurp an identity (e.g.
password robustness).

 Rights separation: distinguish various types of users
with predefined actions to separate for example the
data exploitation tasks and the database maintenance
tasks.

 Data Access control: allow access to the stored data
only to authorized persons. This access control must
allow various access modes (reading and/or writing)
and a variable granularity (all databases or one or
several database tables).

 Integrity and confidentiality of the stored data:
ensure that only authorized users can modify the stored
data in the server hosting the DBMS (Database
Management System) and read critical data.

 Communications ciphering: ensure the integrity and
if needed the confidentiality of the requests and data
exchanged between the various equipments
implementing or using the database service i.e.
exchanges between clients hosts (end-users or
administrators) and the server hosting the DBMS or
between servers in case of a distributed DBMS (data
replication).

 Data concealment: conceal real data in artificial one
to falsify the volume of real data, specifically when
data are in production, while allowing finding easily
the real data.

 Data masking: use an irreversible process to replace
sensitive data and ensure that original data cannot be
found or restored. This property is very important
particularly when data are used in the context of
application developments and tests.

 Audit services: log the events concerning the accesses
to the DBMS and ensure the integrity of the logs. This
type of service is necessary to control a posteriori the
accesses and detects the users who exceed their rights.

 Certification: This last criterion concerns the EAL
(Evaluation Assurance Level) certification defined in
seven levels that allows evaluation of IT applications.
For civil applications, the EAL is generally between 1
and 4+ and for military applications between 5 and 7.

Using these ten criteria, we can see that traditional
databases are highly secured. This is particularly true for
proprietary databases (i.e. Microsoft SQL and Oracle) that
are more mature than those used in clouds that are
relatively new. We can also see that cloud databases do not
ensure data confidentiality as generally cloud providers let
the users/clients manage the confidentiality of their data.
Moreover, usually in cloud databases such as Amazon
SimpleDB, data access control is provided but not at a fine
granularity level. Actually, the access to a database is
associated to a user account or user role that has all the
rights on it and it is not possible to restrict the access rights.
Finally, we can see that there is no data concealment
mechanism, i.e. allowing protection against the problem of
statistics explained in the previous section. Oracle is the
only database proposing a similar service but for producing
artificial data in the context of data not in production.
Therefore, in the following section, we present our solution
of data concealment allowing falsification of any kind of

statistics done on data in production.
C. Adversary Model:
Security threats faced by cloud data storage can come from
two different sources. On the one hand, a CSP can be self-
interested, un-trusted and possibly malicious. Not only does
it desire to move data that has not been or is rarely accessed
to a lower tier of storage than agreed for monetary reasons,
but it may also attempt to hide a data loss incident due to
management errors, Byzantine failures and so on. On the
other hand, there may also exist an economically motivated
adversary, who has the capability to compromise a number
of cloud data storage servers in different time intervals and
subsequently is able to modify or delete users’ data while
remaining undetected by CSPs for a certain period.
There are 2 types of adversary model
Weak Adversary: The adversary is interested in corrupting
the user’s data files stored on individual servers. Once a
server is comprised, an adversary can pollute the original
data files by modifying or introducing its own fraudulent
data to prevent the original data from being retrieved by the
user.
Strong Adversary: This is the worst case scenario, in
which we assume that the adversary can compromise all the
storage servers so that he can intentionally modify the data
files as long as they are internally consistent. In fact, this is
equivalent to the case where all servers are colluding
together to hide a data loss or corruption incident.

3. EXISTING MECHANISMS: PERFORMANCE

COMPARISON
Reed- Solomon technique ensures the correctness and error
localization on the stored data; LDPC codes have a great
advantage in terms of encoding and decoding time over
Reed-Solomon codes

Table 2: Comparison of Reed-Solomon and LDPC

Table 2 summarizes some of the key differences between
Reed-Solomon and LDPC coding. When comparing the
two types of coding, the properties of key importance are
the encoding and decoding times, and the average number
of blocks that are necessary to reconstruct a set. LDPC
codes have a great advantage in terms of encoding and
decoding time over Reed-Solomon codes; in addition,
Reed-Solomon decoding requires n blocks from a set
before decoding can begin, while LDPC decoding can take
place on-the-fly. However, for small n, the extra blocks that
LDPC codes can require for decoding can cause substantial
performance degradation. Moreover, for systems where the
network connection is slow, Reed-Solomon Codes can
sometimes outperform LDPC codes despite the increased
decoding penalty

 Reed Solomon code LDPC
Primary
operation

Galois field dot product XOR

Quality of
encoding

Optimal Sub-optimal

Decoding
complexity

O(n^3)
O(n ln(1=)), where
2 R [11]

Overhead
factor

1 Roughly 1.15

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 627

4. PROPOSED MECHANISM FOR ENSURING DATA

SECURITY:
Here we propose an effective and flexible distributed
scheme with explicit dynamic data support to ensure the
correctness of users’ data in the cloud. We rely on erasure
correcting code in the file distribution preparation to
provide redundancies and guarantee the data dependability.
This construction drastically reduces the communication
and storage overhead as compared to the traditional
replication-based file distribution techniques. By utilizing
the homomorphism token with distributed verification of
erasure-coded data [12], our scheme achieves the storage
correctness insurance as well as data error localization, i.e.,
whenever data corruption has been detected during the
storage correctness verification, our scheme can almost
guarantee the simultaneous localization of data errors, i.e.,
the identification of the misbehaving server(s).
� Compared too many of its predecessors, which only

provide binary results about the storage state across the
distributed servers, the challenge-response protocol in
our work further provides the localization of data error.

� unlike most prior works for ensuring remote data
integrity, the new scheme supports secure and efficient
dynamic operations on data blocks, including: update,
delete and append.

� Extensive security and performance analysis shows
that the proposed scheme is highly efficient and
resilient against Byzantine failure, malicious data
modification attack, and even server colluding attacks.

Fig 4.1: Conceptual Architecture

A. Conceptual network architecture for cloud data
storage is illustrated in Figure 4.1, three different network
entities can be identified as follows:
User: Users, who have data to be stored in the cloud and
rely on the cloud for data computation, consist of both
individual consumers and organizations.
Cloud Service Provider (CSP): A CSP, who has
significant resources and expertise in building and
managing distributed cloud storage servers, owns and
operates live Cloud Computing systems.
Third Party Auditor (TPA): An optional TPA, who has
expertise and capabilities that users may not have, is trusted
to assess and expose risk of cloud storage services on
behalf of the users upon request.
B. Function of low density parity check codes:
LDPC codes are defined by a sparse parity-check matrix.
This sparse matrix is often randomly generated, subject to
the sparsity constraints. These codes were first designed by

Gallager in 1962. Below is a graph fragment of an example
LDPC code using Forney's factor graph notation. In this
graph, n variable nodes in the top of the graph are
connected to (n-k) constraint nodes in the bottom of the
graph. This is a popular way of graphically representing an
(n, k) LDPC code. The bits of a valid message, when placed
on the T's at the top of the graph, satisfy the graphical
constraints. Specifically, all lines connecting to a variable
node (box with an '=' sign) have the same value, and all
values connecting to a factor node (box with a '+' sign)
must sum, modulo two, to zero (in other words, they must
sum to an even number).

Ignoring any lines going out of the picture, there are 8
possible 6-bit strings corresponding to valid code words:
(i.e., 000000, 011001, 110010, 101011, 111100, 100101,
001110, 010111). This LDPC code fragment represents a 3-
bit message encoded as six bits. Redundancy is used, here,
to increase the chance of recovering from channel errors.
This is a (6, 3) linear code, with n = 6 and k = 3.
Once again ignoring lines going out of the picture, the
parity-check matrix representing this graph fragment is

In this matrix, each row represents one of the three parity-
check constraints, while each column represents one of the
six bits in the received codeword.
In this example, the eight code words can be obtained by
putting the parity-check matrix H into this form through
basic row operations:

From this, the generator matrix G can be obtained as
(noting that in the special case of this being a binary code),
or specifically:

Finally, by multiplying all eight possible 3-bit strings by G,
all eight valid code words are obtained. For example, the
codeword for the bit-string '101' is obtained by:

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 628

Decoding
As with other codes, optimally decoding an LDPC code on
the binary symmetric channel is an NP-complete problem,
although techniques based on iterative belief propagation
used in practice lead to good approximations. In contrast,
belief propagation on the binary erasure channel is
particularly simple where it consists of iterative constraint
satisfaction.
For example, consider that the valid codeword, 101011,
from the example above, is transmitted across a binary
erasure channel and received with the first and fourth bit
erased to yield ?01?11. Since the transmitted message must
have satisfied the code constraints, the message can be
represented by writing the received message on the top of
the factor graph.
In this example, the first bit cannot yet be recovered,
because all of the constraints connected to it have more
than one unknown bit. In order to proceed with decoding
the message, constraints connecting to only one of the
erased bits must be identified. In this example, either the
second or third constraint suffices. Examining the second
constraint, the fourth bit must have been 0, since only a 0 in
that position would satisfy the constraint.

This procedure is then iterated. The new value for the
fourth bit can now be used in conjunction with the first
constraint to recover the first bit as seen below. This means
that the first bit must be a 1 to satisfy the leftmost
constraint.
Thus, the message can be decoded iteratively. For other
channel models, the messages passed between the variable
nodes and check nodes are real numbers, which express
probabilities and likelihoods of belief.
This result can be validated by multiplying the corrected

codeword r by the parity-check matrix H:
Because the outcome z (the syndrome) of this operation is
the 3 × 1 zero vector, the resulting codeword r is
successfully validated.

5. EXPERIMENTAL RESULTS:
On successful execution of the encoding techniques, we
will display various operations done on client, TPA and the
server.

Fig 5.1: Client viewing the contents of the file stored on

cloud

Fig 5.2: Server modifying the data

Once the file has successfully uploaded by the client, then
client can download it by selecting down Client can
perform various operations such as Upload a file & files in
the cloud, view the files uploaded in the cloud. Download,
Delete & Verify & correct are the objects used to see the
files stored load option and then the user can download the
files which are stored on to the cloud. This Screen Shot
display the contents of the file upon downloading the
particular file by the client.
A server can view the number of users subscribed and each
of the individual users files which has been stored on the
server. The server has opted to view the files of the user
“student”. The server upon opening the users file he
modifies the content and save the file back as shown in the
above screenshot.

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 629

Fig 5.3: Client viewing the saved file on the cloud

This Screen Shot displays the data that is modified by the
server and the client downloads it and he does not know if
the contents of the file are modified or not.

 Fig 5.4: Recovery of the modified file.

 This Screen Shot displays the data had errors and was
recovered successfully. This is the result of Verify &
Correct button.

Fig 5.5: Recovery of the modified file.

 This Screen Shot displays the recovered data file. This is
the result of ok button.

Fig 5.6: TPA Status after a user requested for Verify &
Correct.
The main work of TPA is who has expertise and capabilities
that users may not have, i.e. trusted to assess and expose
risk of cloud storage services on behalf of the users upon
request. This Screen Shot displays the information
regarding the particular user requesting to verify the file.
And would also display if the particular data file had errors
or not.

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 630

6. CONCLUSION:
We investigated the problem of data security in cloud data
storage, which is essentially a distributed storage system.
To ensure the correctness of users’ data in cloud data
storage, we proposed an effective and flexible distributed
scheme with explicit dynamic data support, including block
update, delete, and append. We rely on erasure-correcting
code in the file distribution preparation to provide
redundancy parity vectors and guarantee the data
dependability. By utilizing the homomorphic token with
distributed verification of erasure coded data, our scheme
achieves the integration of storage correctness insurance
and data error localization, i.e., whenever data corruption
has been detected during the storage correctness
verification across the distributed servers, we can almost
guarantee the simultaneous identification of the
misbehaving server(s). Through detailed security and
performance analysis, we show that our scheme is highly
efficient and resilient to Byzantine failure, malicious data
modification attack, and even server colluding attacks
.Future Enhancement: We believe that data storage security
in Cloud Computing, an area full of challenges and of
paramount importance, is still in its infancy now, and many
research problems are yet to be identified. We envision
several possible directions for future research on this area.
The most promising one we believe is a model in which
public verifiability is enforced. Public verifiability,
supported in allows TPA to audit the cloud data storage
without demanding users’ time, feasibility or resources. An
interesting question in this model is if we can construct a
scheme to achieve both public verifiability and storage
correctness assurance of dynamic data. Besides, along with
our research on dynamic cloud data storage, we also plan to
investigate the problem of fine-grained data error
localization.

REFERENCES
[1]. Amazon.com, “Amazon Web Services (AWS),” Online at

http://aws.amazon.com, 2008.
[2]. [2] N. Gohring, “Amazon’s S3 down for several hours,” Online at

http://www.pcworld.com/businesscenter/article/142549/amazons
s3 down for several hours.html, 2008.

[3] A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrievability
for Large Files,” Proc. of CCS ’07, pp. 584–597, 2007.

[4] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. of Asiacrypt ’08, Dec. 2008.

[5] K. D. Bowers, A. Juels, and A. Oprea, “Proofs of Retrievability:
Theory and Implementation,” Cryptology ePrint Archive, Report
2008/175, 2008, http://eprint.iacr.org/.

[6] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z.
Peterson, and D. Song, “Provable Data Possession at Untrusted
Stores,” Proc. Of CCS ’07, pp. 598–609, 2007.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable
and Efficient Provable Data Possession,” Proc. of
SecureComm ’08, pp. 1– 10, 2008.

[8] T. S. J. Schwarz and E. L. Miller, “Store, Forget, and Check:
Using Algebraic Signatures to Check Remotely Administered
Storage,” Proc. of ICDCS ’06, pp. 12–12, 2006.

[9] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard,
“A Cooperative Internet Backup Scheme,” Proc. of the 2003
USENIX Annual Technical Conference (General Track), pp. 29–
41, 2003.

[10] K. D. Bowers, A. Juels, and A. Oprea, “HAIL: A High-
Availability and Integrity Layer for Cloud Storage,” Cryptology
ePrint Archive, Report 2008/489, 2008, http://eprint.iacr.org/.

[11] L. Carter and M. Wegman, “Universal Hash Functions,” Journal
of Computer and System Sciences, vol. 18, no. 2, pp. 143–154,
1979.

[12] J. Hendricks, G. Ganger, and M. Reiter, “Verifying Distributed
Erasurecoded Data,” Proc. 26th ACM Symposium on Principles
of Distributed Computing, pp. 139–146, 2007.

[13] J. S. Plank and Y. Ding, “Note: Correction to the 1997 Tutorial
on Reed-Solomon Coding,” University of Tennessee, Tech. Rep.
CS-03- 504, 2003

.

Deepitha K R et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (4) , 2013, 625 - 621

www.ijcsit.com 631

