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Abstract:  Cloud Computing has been envisioned as the next 
generation architecture of IT Enterprise. In contrast to 
traditional solutions, where the IT services are under proper 
physical, logical and personnel controls, Cloud Computing 
moves the application software and databases to the large 
data centres, where the management of the data and services 
may not be fully trustworthy. This unique attribute, however, 
poses many new security challenges which have not been well 
understood. In this paper, we are implementing the cloud data 
storage security, which has always been an important aspect 
of quality of service. To ensure the correctness of users’ data in 
the cloud, we propose an effective and flexible distributed 
scheme with two salient features, opposing to its predecessors. 
By utilizing the homomorphism token with distributed 
verification of erasure-coded data and low density parity 
check, our scheme achieves the integration of storage 
correctness insurance and data error localization, i.e., the 
identification of misbehaving server(s). Unlike most prior 
works, the new scheme further supports secure and efficient 
dynamic operations on data blocks, including: data update, 
delete and append. Extensive security and performance 
analysis shows that the proposed scheme is highly efficient 
and resilient against Byzantine failure, malicious data 
modification attack, and even server colluding attacks. 
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1. INTRODUCTION: 
 Several trends are opening up the era of Cloud Computing, 
which is an Internet-based development and use of 
computer technology. The ever cheaper and more powerful 
processors, together with the software as a service (SaaS) 
computing architecture, are transforming data centers into 
pools of computing service on a huge scale. The increasing 
network bandwidth and reliable yet flexible network 
connections make it even possible that users can now 
subscribe high quality services from data and software that 
reside solely on remote data centers. 
Moving data into the cloud offers great convenience to 
users since they don’t have to care about the complexities 
of direct hardware management. The pioneer of Cloud 
Computing vendors, Amazon Simple Storage Service (S3) 
and Amazon Elastic Compute Cloud (EC2) [1] are both 
well known examples. While these internet-based online 
services do provide huge amounts of storage space and 
customizable computing resources, this computing platform 
shift, however, is eliminating the responsibility of local 
machines for data maintenance at the same time. As a result, 
users are at the mercy of their cloud service providers for 
the availability and integrity of their data. Recent downtime 
of Amazon’s S3 is such an example [2]. 
From the perspective of data security, which has always 

been an important aspect of quality of service, Cloud 
Computing inevitably poses new challenging security 
threats for number of reasons. Firstly, traditional 
cryptographic primitives for the purpose of data security 
protection cannot be directly adopted due to the users’ loss 
control of data under Cloud Computing. Therefore, 
verification of correct data storage in the cloud must be 
conducted without explicit knowledge of the whole data. 
Considering various kinds of data for each user stored in 
the cloud and the demand of long term continuous 
assurance of their data safety, the problem of verifying 
correctness [12] of data storage in the cloud becomes even 
more challenging. Secondly, Cloud Computing is not just a 
third party data warehouse. The data stored in the cloud 
may be frequently updated by the users, including insertion, 
deletion, modification, appending, reordering, etc. To 
ensure storage correctness under dynamic data update is 
hence of paramount importance. However, this dynamic 
feature also makes traditional integrity insurance 
techniques futile and entails new solutions. Last but not the 
least, the deployment of Cloud Computing is powered by 
data centers running in a simultaneous, cooperated and 
distributed manner. Individual user’s data is redundantly 
stored in multiple physical locations to further reduce the 
data integrity threats. Therefore, distributed protocols for 
storage correctness assurance will be of most importance in 
achieving a robust and secure cloud data storage system in 
the real world. However, such important area remains to be 
fully explored in the literature. 
 
A. Problem Statement: In cloud data storage, a user 
stores his data through a CSP into a set of cloud servers, 
which are running in a simultaneous, cooperated and 
distributed manner. Data redundancy can be employed with 
technique of erasure-correcting code to further tolerate 
faults or server crash as user’s data grows in size and 
importance. Thereafter, for application purposes, the user 
interacts with the cloud servers via CSP to access or 
retrieve his data. In some cases, the user may need to 
perform block level operations we are considering are 
block update, delete, insert and append. 
As users no longer possess their data locally, it is of critical 
importance to assure users that their data are being 
correctly stored and maintained. That is, users should be 
equipped with security means so that they can make 
continuous correctness assurance of their stored data even 
without the existence of local copies. In case those users do 
not necessarily have the time, feasibility or resources to 
monitor their data, they can delegate the tasks to an 
optional trusted TPA of their respective choices. In our 
model, we assume that the point-to-point communication 
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channels between each cloud server and the user is 
authenticated and reliable, which can be achieved in 
practice with little overhead, we propose Low Density 
Parity Check – LDPC Encoding technique for ensuring data 
correctness stored in cloud scenario.    
. 

2. LITERATURE SURVEY 
A. Secure cloud:  In cloud data storage system, users 
store their data in the cloud and no longer possess the data 
locally. Thus, the correctness and availability of the data 
files being stored on the distributed cloud servers must be 
guaranteed. The key issues in data storage are: 
There are many constraints, discussed as C1, C2 & C3.  
C1. How do I ensure that there is no un-authorized access 
to my cloud by a disgruntled employee, who has left the 
organization or by an identity thief? 
C2. How to ensure proper levels of authentication to cloud 
services? How do I manage multi-device access? 
C3.  In multi-cloud scenario, how do I ensure that I provide 
/ delegate access to users to different security domains so 
that the end-to-end workflow is seamless? Similarly, in 
hybrid cloud, how do I create a minimum common access 
control and identity structure? 
Implication: Ensure proper access control and identity 
management. 
Synchronizing enterprise and external cloud services access 
control lists in the context of C1 to ensure right access roles 
is a very important challenging issue as PaaS and SaaS 
platforms have complex hierarchies and many fine-grained 
access capabilities (tenant org level, sub-tenant, and 
individual user levels). This assumes importance as users, 
who are no longer part of an enterprise, may still 
potentially exploit access provided in cloud; unless those 
credentials are revoked quickly. However, we recognize 
this as more of a process issue than a technology one. Use 
of standard languages like Service Provisioning Markup 
Language] promoted by OASIS, can enable faster user 
account provisioning and de-provisioning. Cloud service 
authentication (C2) presents some interesting problems. 
Cloud services are increasingly getting accessed through 
browsers and thin mobile devices running new set of 
applications like HTML-5. Browsers do not have direct 
means of handling XML signatures and XML encryption, 
and rely on the underlying SSL layer for handshake. Hence 
this channel may become a potential threat if not secured 
properly. This may push enterprises to use VPNs while 
communicating to cloud. The Cloud Security Alliance 
recommends cloud provider to provide stronger 
authentication mechanism and also (optionally) allow users 
to use third party identity management and single sign- on 
platforms like Microsoft Passport. This may lead to an 
added set of authentication complexity. Online open 
identity management communities like OpenID , OAuth etc. 
are proliferating and each brings its own set of integration 
challenges for cloud providers. 
There is a growing chorus on ‘inter cloud’ hand-offs and 
federated identity management (C3), possibly through 
assertion tokens like Security Assertion Markup Language 
(SAML) or privilege management infrastructure based on 
x.509 certificates. The ongoing standardization work WS- 
federation may provide some help in this aspect. Cloud 

federations need to establish a set of common security 
token services and identity providers. But in dynamic cloud 
scenario these trust relations may not work. We need to 
develop more flexible cases of identity federation. 
 
B.  Security threats: 
The table 1, extracted from a study done in, shows the main 
cloud computing security issues. As shown in the column 
Total, more than 70 % of the SME (small and medium 
enterprises) interviewed for this study are concerned by the 
first six criteria and more specifically by confidentiality of 
data. 
The European Network and Information Security Agency 
(ENISA) identified thirty-five risks divided in four types: 
policy and organizational risks, technical risks, legal risks 
and risks that are not specific to the cloud [6]. From these 
risks, the ENISA extracted the eight most important risks. 
Five of these eight risks concerns directly or indirectly the 
data confidentiality: isolation failure, management interface 
compromise, data protection, insecure or incomplete data 
deletion, and malicious insider. Similarly to ENISA, the 
CSA identified thirteen kinds of risks related to cloud 
computing [3] and selected the seven most important risks 
[7]. Five of these risks concerns directly or indirectly data 
confidentiality: insecure application programming 
interfaces, malicious insiders, shared technology 
vulnerabilities data loss/leakage, account service and traffic 
hijacking. However, some of these security risks are not 
specific to the cloud computing [8]. 
 

Criteria 
Very 
Important 

Showstopper Total 

Confidentiality of 
corporate data 

30,9% 63,6% 94,5% 

Privacy 43,9% 43,9% 87,8% 
Availability of 
services and/or data 

47,3% 40,0% 87,3% 

Integrity of services 
and/or data 

42,6% 44,4% 87,0% 

Loss control of 
services and/or data 

47,2% 28,3% 75,5% 

Lack of liability of 
providers in case of 
security incidents 

43,1% 29,4% 72,5% 

Repudiation 47,9% 8,3% 56,2% 
 
After having seen the main cloud computing security issues, 
we now focus on the security properties provided by the 
existing databases and we briefly present the results of the 
study we have done on these databases taking into account 
the feedback of final users, personal tests and databases 
documentation. For this study, we have chosen the most 
popular freeware and proprietary traditional databases 
(such as SQL Microsoft, Oracle, DB2, MySQL, 
PostgreSQL) as well as clouds databases (such as Amazon 
SimpleDB, Google DataStore and Azure SQL). To compare 
the existing databases, from a security point of view, we 
have defined ten security criteria  
 Users’ identification and authentication: identify the 

database users in a safe and not ambiguous way in 
order to apply the access controls according to the 
rights of each user. 
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 Identification robustness and authentication: 
guarantee that it is difficult to usurp an identity (e.g. 
password robustness). 

 Rights separation: distinguish various types of users 
with predefined actions to separate for example the 
data exploitation tasks and the database maintenance 
tasks. 

 Data Access control: allow access to the stored data 
only to authorized persons. This access control must 
allow various access modes (reading and/or writing) 
and a variable granularity (all databases or one or 
several database tables). 

 Integrity and confidentiality of the stored data: 
ensure that only authorized users can modify the stored 
data in the server hosting the DBMS (Database 
Management System) and read critical data. 

 Communications ciphering: ensure the integrity and 
if needed the confidentiality of the requests and data 
exchanged between the various equipments 
implementing or using the database service i.e. 
exchanges between clients hosts (end-users or 
administrators) and the server hosting the DBMS or 
between servers in case of a distributed DBMS (data 
replication ). 

 Data concealment: conceal real data in artificial one 
to falsify the volume of real data, specifically when 
data are in production, while allowing finding easily 
the real data. 

 Data masking: use an irreversible process to replace 
sensitive data and ensure that original data cannot be 
found or restored. This property is very important 
particularly when data are used in the context of 
application developments and tests. 

 Audit services: log the events concerning the accesses 
to the DBMS and ensure the integrity of the logs. This 
type of service is necessary to control a posteriori the 
accesses and detects the users who exceed their rights. 

 Certification: This last criterion concerns the EAL 
(Evaluation Assurance Level) certification defined in 
seven levels that allows evaluation of IT applications. 
For civil applications, the EAL is generally between 1 
and 4+ and for military applications between 5 and 7. 

Using these ten criteria, we can see that traditional 
databases are highly secured. This is particularly true for 
proprietary databases (i.e. Microsoft SQL and Oracle) that 
are more mature than those used in clouds that are 
relatively new. We can also see that cloud databases do not 
ensure data confidentiality as generally cloud providers let 
the users/clients manage the confidentiality of their data. 
Moreover, usually in cloud databases such as Amazon 
SimpleDB, data access control is provided but not at a fine 
granularity level. Actually, the access to a database is 
associated to a user account or user role that has all the 
rights on it and it is not possible to restrict the access rights. 
Finally, we can see that there is no data concealment 
mechanism, i.e. allowing protection against the problem of 
statistics explained in the previous section. Oracle is the 
only database proposing a similar service but for producing 
artificial data in the context of data not in production. 
Therefore, in the following section, we present our solution 
of data concealment allowing falsification of any kind of 

statistics done on data in production. 
C.  Adversary Model: 
Security threats faced by cloud data storage can come from 
two different sources. On the one hand, a CSP can be self-
interested, un-trusted and possibly malicious. Not only does 
it desire to move data that has not been or is rarely accessed 
to a lower tier of storage than agreed for monetary reasons, 
but it may also attempt to hide a data loss incident due to 
management errors, Byzantine failures and so on. On the 
other hand, there may also exist an economically motivated 
adversary, who has the capability to compromise a number 
of cloud data storage servers in different time intervals and 
subsequently is able to modify or delete users’ data while 
remaining undetected by CSPs for a certain period. 
There are 2 types of adversary model 
Weak Adversary: The adversary is interested in corrupting 
the user’s data files stored on individual servers. Once a 
server is comprised, an adversary can pollute the original 
data files by modifying or introducing its own fraudulent 
data to prevent the original data from being retrieved by the 
user. 
Strong Adversary: This is the worst case scenario, in 
which we assume that the adversary can compromise all the 
storage servers so that he can intentionally modify the data 
files as long as they are internally consistent. In fact, this is 
equivalent to the case where all servers are colluding 
together to hide a data loss or corruption incident. 
 

3. EXISTING MECHANISMS: PERFORMANCE 

COMPARISON 
Reed- Solomon technique ensures the correctness and error 
localization on the stored data; LDPC codes have a great 
advantage in terms of encoding and decoding time over 
Reed-Solomon codes 
 
Table 2: Comparison of Reed-Solomon and LDPC  

 
Table 2 summarizes some of the key differences between 
Reed-Solomon and LDPC coding. When comparing the 
two types of coding, the properties of key importance are 
the encoding and decoding times, and the average number 
of blocks that are necessary to reconstruct a set. LDPC 
codes have a great advantage in terms of encoding and 
decoding time over Reed-Solomon codes; in addition, 
Reed-Solomon decoding requires n blocks from a set 
before decoding can begin, while LDPC decoding can take 
place on-the-fly. However, for small n, the extra blocks that 
LDPC codes can require for decoding can cause substantial 
performance degradation. Moreover, for systems where the 
network connection is slow, Reed-Solomon Codes can 
sometimes outperform LDPC codes despite the increased 
decoding penalty 

 Reed Solomon code LDPC 
Primary 
operation 

Galois field dot product XOR 

Quality of 
encoding 

Optimal Sub-optimal 

Decoding 
complexity 

O(n^3) 
O(n ln(1=)), where  
2 R [11] 

Overhead 
factor 

1 Roughly 1.15 
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4. PROPOSED MECHANISM FOR ENSURING DATA 

SECURITY: 
Here we propose an effective and flexible distributed 
scheme with explicit dynamic data support to ensure the 
correctness of users’ data in the cloud. We rely on erasure 
correcting code in the file distribution preparation to 
provide redundancies and guarantee the data dependability. 
This construction drastically reduces the communication 
and storage overhead as compared to the traditional 
replication-based file distribution techniques. By utilizing 
the homomorphism token with distributed verification of 
erasure-coded data [12], our scheme achieves the storage 
correctness insurance as well as data error localization, i.e., 
whenever data corruption has been detected during the 
storage correctness verification, our scheme can almost 
guarantee the simultaneous localization of data errors, i.e., 
the identification of the misbehaving server(s). 
� Compared too many of its predecessors, which only 

provide binary results about the storage state across the 
distributed servers, the challenge-response protocol in 
our work further provides the localization of data error. 

� unlike most prior works for ensuring remote data 
integrity, the new scheme supports secure and efficient 
dynamic operations on data blocks, including: update, 
delete and append. 

� Extensive security and performance analysis shows 
that the proposed scheme is highly efficient and 
resilient against Byzantine failure, malicious data 
modification attack, and even server colluding attacks. 

 
Fig 4.1: Conceptual Architecture 

 
A.  Conceptual network architecture for cloud data 
storage is illustrated in Figure 4.1, three different network 
entities can be identified as follows: 
User: Users, who have data to be stored in the cloud and 
rely on the cloud for data computation, consist of both 
individual consumers and organizations. 
Cloud Service Provider (CSP): A CSP, who has 
significant resources and expertise in building and 
managing distributed cloud storage servers, owns and 
operates live Cloud Computing systems. 
Third Party Auditor (TPA): An optional TPA, who has 
expertise and capabilities that users may not have, is trusted 
to assess and expose risk of cloud storage services on 
behalf of the users upon request. 
B. Function of low density parity check codes: 
LDPC codes are defined by a sparse parity-check matrix. 
This sparse matrix is often randomly generated, subject to 
the sparsity constraints. These codes were first designed by 

Gallager in 1962. Below is a graph fragment of an example 
LDPC code using Forney's factor graph notation. In this 
graph, n variable nodes in the top of the graph are 
connected to (n-k) constraint nodes in the bottom of the 
graph. This is a popular way of graphically representing an 
(n, k) LDPC code. The bits of a valid message, when placed 
on the T's at the top of the graph, satisfy the graphical 
constraints. Specifically, all lines connecting to a variable 
node (box with an '=' sign) have the same value, and all 
values connecting to a factor node (box with a '+' sign) 
must sum, modulo two, to zero (in other words, they must 
sum to an even number). 

 

 
 
Ignoring any lines going out of the picture, there are 8 
possible 6-bit strings corresponding to valid code words: 
(i.e., 000000, 011001, 110010, 101011, 111100, 100101, 
001110, 010111). This LDPC code fragment represents a 3-
bit message encoded as six bits. Redundancy is used, here, 
to increase the chance of recovering from channel errors. 
This is a (6, 3) linear code, with n = 6 and k = 3. 
Once again ignoring lines going out of the picture, the 
parity-check matrix representing this graph fragment is 
 

 
In this matrix, each row represents one of the three parity-
check constraints, while each column represents one of the 
six bits in the received codeword. 
In this example, the eight code words can be obtained by 
putting the parity-check matrix H into this form through 
basic row operations: 
 
From this, the generator matrix G can be obtained as 
(noting that in the special case of this being a binary code), 
or specifically: 

 
Finally, by multiplying all eight possible 3-bit strings by G, 
all eight valid code words are obtained. For example, the 
codeword for the bit-string '101' is obtained by: 
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Decoding 
As with other codes, optimally decoding an LDPC code on 
the binary symmetric channel is an NP-complete problem, 
although techniques based on iterative belief propagation 
used in practice lead to good approximations. In contrast, 
belief propagation on the binary erasure channel is 
particularly simple where it consists of iterative constraint 
satisfaction. 
For example, consider that the valid codeword, 101011, 
from the example above, is transmitted across a binary 
erasure channel and received with the first and fourth bit 
erased to yield ?01?11. Since the transmitted message must 
have satisfied the code constraints, the message can be 
represented by writing the received message on the top of 
the factor graph. 
In this example, the first bit cannot yet be recovered, 
because all of the constraints connected to it have more 
than one unknown bit. In order to proceed with decoding 
the message, constraints connecting to only one of the 
erased bits must be identified. In this example, either the 
second or third constraint suffices. Examining the second 
constraint, the fourth bit must have been 0, since only a 0 in 
that position would satisfy the constraint. 

 
This procedure is then iterated. The new value for the 
fourth bit can now be used in conjunction with the first 
constraint to recover the first bit as seen below. This means 
that the first bit must be a 1 to satisfy the leftmost 
constraint. 
Thus, the message can be decoded iteratively. For other 
channel models, the messages passed between the variable 
nodes and check nodes are real numbers, which express 
probabilities and likelihoods of belief. 
This result can be validated by multiplying the corrected 

codeword r by the parity-check matrix H: 
Because the outcome z (the syndrome) of this operation is 
the 3 × 1 zero vector, the resulting codeword r is 
successfully validated.  
 

5. EXPERIMENTAL RESULTS: 
On successful execution of the encoding techniques, we 
will display various operations done on client, TPA and the 
server. 

 
Fig 5.1: Client viewing the contents of the file stored on 

cloud 
 

 
Fig 5.2: Server modifying the data 

 
Once the file has successfully uploaded by the client, then 
client can download it by selecting down Client can 
perform various operations such as Upload a file & files in 
the cloud, view the files uploaded in the cloud. Download, 
Delete & Verify & correct are the objects used to see the 
files stored load option and then the user can download the 
files which are stored on to the cloud. This Screen Shot 
display the contents of the file upon downloading the 
particular file by the client. 
A server can view the number of users subscribed and each 
of the individual users files which has been stored on the 
server. The server has opted to view the files of the user 
“student”. The server upon opening the users file he 
modifies the content and save the file back as shown in the 
above screenshot. 
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Fig 5.3: Client viewing the saved file on the cloud 

 
This Screen Shot displays the data that is modified by the 
server and the client downloads it and he does not know if 
the contents of the file are modified or not. 
 

 
               Fig 5.4: Recovery of the modified file. 
 
   This Screen Shot displays the data had errors and was 
recovered successfully. This is the result of Verify & 
Correct button. 

 
Fig 5.5: Recovery of the modified file. 

 
 This Screen Shot displays the recovered data file. This is 
the result of ok button. 

  
Fig 5.6: TPA Status after a user requested for Verify & 
Correct. 
The main work of TPA is who has expertise and capabilities 
that users may not have, i.e. trusted to assess and expose 
risk of cloud storage services on behalf of the users upon 
request. This Screen Shot displays the information 
regarding the particular user requesting to verify the file. 
And would also display if the particular data file had errors 
or not. 
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6. CONCLUSION: 
We investigated the problem of data security in cloud data 
storage, which is essentially a distributed storage system. 
To ensure the correctness of users’ data in cloud data 
storage, we proposed an effective and flexible distributed 
scheme with explicit dynamic data support, including block 
update, delete, and append. We rely on erasure-correcting 
code in the file distribution preparation to provide 
redundancy parity vectors and guarantee the data 
dependability. By utilizing the homomorphic token with 
distributed verification of erasure coded data, our scheme 
achieves the integration of storage correctness insurance 
and data error localization, i.e., whenever data corruption 
has been detected during the storage correctness 
verification across the distributed servers, we can almost 
guarantee the simultaneous identification of the 
misbehaving server(s). Through detailed security and 
performance analysis, we show that our scheme is highly 
efficient and resilient to Byzantine failure, malicious data 
modification attack, and even server colluding attacks 
.Future Enhancement: We believe that data storage security 
in Cloud Computing, an area full of challenges and of 
paramount importance, is still in its infancy now, and many 
research problems are yet to be identified. We envision 
several possible directions for future research on this area. 
The most promising one we believe is a model in which 
public verifiability is enforced. Public verifiability, 
supported in allows TPA to audit the cloud data storage 
without demanding users’ time, feasibility or resources. An 
interesting question in this model is if we can construct a 
scheme to achieve both public verifiability and storage 
correctness assurance of dynamic data. Besides, along with 
our research on dynamic cloud data storage, we also plan to 
investigate the problem of fine-grained data error 
localization. 
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